Roller Bearing Fault Diagnosis Based on Nonlinear Redundant Lifting Wavelet Packet Analysis

نویسندگان

  • Lixin Gao
  • Zijing Yang
  • Ligang Cai
  • Huaqing Wang
  • Peng Chen
چکیده

A nonlinear redundant lifting wavelet packet algorithm was put forward in this study. For the node signals to be decomposed in different layers, predicting operators and updating operators with different orders of vanishing moments were chosen to take norm l(p) of the scale coefficient and wavelet coefficient acquired from decomposition, the predicting operator and updating operator corresponding to the minimal norm value were used as the optimal operators to match the information characteristics of a node. With the problems of frequency alias and band interlacing in the analysis of redundant lifting wavelet packet being investigated, an improved algorithm for decomposition and node single-branch reconstruction was put forward. The normalized energy of the bottommost decomposition node coefficient was calculated, and the node signals with the maximal energy were extracted for demodulation. The roller bearing faults were detected successfully with the improved analysis on nonlinear redundant lifting wavelet packet being applied to the fault diagnosis of the roller bearings of the finishing mills in a plant. This application proved the validity and practicality of this method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Redundant Lifting Wavelet Transform Based on Fitting for Fault Feature Extraction of Roller Bearings

A least square method based on data fitting is proposed to construct a new lifting wavelet, together with the nonlinear idea and redundant algorithm, the adaptive redundant lifting transform based on fitting is firstly stated in this paper. By variable combination selections of basis function, sample number and dimension of basis function, a total of nine wavelets with different characteristics...

متن کامل

Bearing Fault Diagnosis Based on Laplace Wavelet Transform

The roller bearing characteristic frequencies contain very little energy, and are usually overwhelmed by noise and higher levels of structural vibrations. Therefore, envelope spectrum analysis is widely used to detection bearing localized fault. In order to overcome the shortcomings in the traditional envelope analysis in which manually specifying a resonant frequency band is required, a new ap...

متن کامل

Application of Wavelet Packet Transform (WPT) for Bearing Fault Diagnosis

The bearings are the most important mechanical elements of rotating machinery. They are employed to support and rotate the shafts in rotating machinery. On the other hand, any fault in bearing can lead to losses on the level of production and equipments as well as creation an unsafe working environment for human. For these reasons, Condition monitoring and fault diagnosis of these bearings has ...

متن کامل

An evolutionary lifting scheme Wavelet Packet Decomposition method for mechanical fault detection in elevator systems

The design procedure of a second-generation wavelet packet decomposition, based on an evolutionary approach, is introduced for industrial fault detection. The procedure has been validated by means of an experimental case study for an induction motor used as traction machine in an elevator system. Preliminary results on three mechanical faults related to ball-bearing show encouraging performance.

متن کامل

Fault Diagnosis of Roller Bearings Based on a Wavelet Neural Network and Manifold Learning

In order to improve the accuracy of the fault diagnosis of roller bearings, this paper proposes a kind of fault diagnosis algorithm based on manifold learning combined with a wavelet neural network. First, a high-dimensional feature signal set is obtained using a conventional feature extraction algorithm; second, an improved Laplacian characteristic mapping algorithm is proposed to reduce the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011